979 resultados para Plant pathology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens that threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. The article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reproduced from typewritten copy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The decision of whether a cell should live or die is fundamental for the wellbeing of all organisms. Despite intense investigation into cell growth and proliferation, only recently has the essential and equally important idea that cells control/programme their own demise for proper maintenance of cellular homeostasis gained recognition. Furthermore, even though research into programmed cell death (PCD) has been an extremely active area of research there are significant gaps in our understanding of the process in plants. In this review, we discuss PCD during plant development and pathogenesis, and compare/contrast this with mammalian apoptosis. © 2008 Blackwell Publishing Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Brown spot (caused by Alternaria alternata) is a major disease of citrus in subtropical areas of Australia. A number of chemicals, the strobilurins azoxystrobin, trifloxystrobin, pyraclostrobin and methoxycrylate, a plant activator (acibenzolar), copper hydroxide, mancozeb, captan, iprodione and chlorothalonil/pyrimthanil were tested in the field for its control. Over three seasons, trees in a commercial orchard received 16, 14 and 7 fungicide sprays, respectively, commencing at flowering in the first season, and petal fall in the later seasons. In all experiments, the strobilurins used alone, or incorporated with copper and mancozeb, were as effective as, or better than the industry standard of copper and mancozeb alone. The only exception was trifloxystrobin, which when used alone was less effective than the industry standard. Acibenzolar used alone was ineffective. Applying a mixture of azoxystrobin and acibenzolar was found to reduce the incidence of brown spot compared with applying azoxystrobin alone but, in either case, disease levels were not found to be significantly different to the industry standard. Captan, iprodione and chlorothalonil/pyrimthanil were as effective as the industry standard. The incidence and severity of rind damage were significantly lowest in the azoxystrobin, methoxycrylate, iprodione and chlorothalonil/pyrimthanil treatments. Medium and high rates of trifloxystrobin (0.07 g/L, 0 .15 g/L) and pyraclostrobin (0.8 g/L, 1.2 g/L) applied alone were the only treatments found to be IPM-incompatible as shown by the elevated level of scale infection on fruit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Rhabdoviridae, whose members collectively infect invertebrates, animals, and plants, form a large family that has important consequences for human health, agriculture, and wildlife ecology. Plant rhabdoviruses can be separated into the genera Cytorhabdovirus and Nucleorhabdovirus, based on their sites of replication and morphogenesis. This review presents a general overviewof classical and contemporary findings about rhabdovirus ecology, pathology, vector relations, and taxonomy. The genome organization and structure of several recently sequenced nucleorhabdoviruses and cytorhabdoviruses is integrated with new cell biology findings to provide a model for the replication of the two genera. A prospectus outlines the exciting opportunities for future research that will contribute to a more detailed understanding of the biology, biochemistry, replication and host interactions of the plant rhabdoviruses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two reliable small-plant bioassays were developed using tissue-cultured banana, resulting in consistent symptom expression and infection by Fusarium oxysporum f. sp. cubense (Foc). One bioassay was based on providing a constant watertable within a closed pot and the second used free-draining pots. Culture medium for spore generation influenced infectivity of Foc. Inoculation of potted banana by drenching potting mix with a conidial suspension, consisting mostly of microconidia, few macroconidia and no chlamydospores, generated from one-quarter-strength potato dextrose agar + streptomycin sulfate, resulted in inconsistent infection. When a conidial suspension that consisted of all three spore types, microconidia, macroconidia and chlamydospores, prepared from spores generated on carnation leaf agar was used, all plants became infected, indicating that the spore type present in conidial suspensions may contribute to inconsistency of infection. Inconsistency of infection was not due to loss of virulence of the pathogen in culture. Millet grain precolonised by Foc as a source of inoculum resulted in consistent infection between replicate plants. Sorghum was not a suitable grain for preparation of inoculum as it was observed to discolour roots and has the potential to stunt root growth, possibly due to the release of phytotoxins. For the modified closed-pot system, a pasteurised potting mix consisting of equal parts of bedding sand, perlite and vermiculite plus 1 g/L Triabon slow release fertiliser was suitable for plant growth and promoted capillary movement of water through the potting mix profile. A suitable potting mix for the free-draining pot system was also developed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plant-parasitic nematodes are important pests of horticultural crops grown in tropical and subtropical regions of Australia. Burrowing nematode (Radopholus similis) is a major impediment to banana production and root-knot nematodes (predominantly Meloidogyne javanica and M. incognita) cause problems on pineapple and a range of annual vegetables, including tomato, capsicum, zucchini, watermelon, rockmelon, potato and sweet potato. In the early 1990s, nematode control in these industries was largely achieved with chemicals, with methyl bromide widely used on some subtropical vegetable crops, ethylene dibromide applied routinely to pineapples and non-volatile nematicides such as fenamiphos applied up to four times a year in banana plantations. This paper discusses the research and extension work done over the last 15 years to introduce an integrated pest management approach to nematode control in tropical and subtropical horticulture. It then discusses various components of current integrated pest management programs, including crop rotation, nematode monitoring, clean planting material, organic amendments, farming systems to enhance biological suppression of nematodes and judicious use of nematicides. Finally, options for improving current management practices are considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Specimen-based records of most of the plant pathogens that occur in Australia can be accessed through the Australian Plant Disease Database and the Australian Plant Pest Database. These databases and the herbaria that underpin them are important resources for resolving quarantine and trade issues as well as for the diagnosis of plant diseases. The importance of these collections and databases to Australia's agricultural industries is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Candidatus Phytoplasma australiense (Ca. P. australiense) is associated with the plant diseases strawberry lethal yellows (SLY), strawberry green petal (SGP), papaya dieback (PDB), Australian grapevine yellows (AGY) and Phormium yellow leaf (PYL; New Zealand). Strawberry lethal yellows disease is also associated with a rickettsia-like-organism (RLO) or infrequently with the tomato big bud (TBB) phytoplasma, the latter being associated with a wide range of plant diseases throughout Australia. In contrast, the RLO has been identified only in association with SLY disease, and Ca. P. australiense has been detected only in a limited number of plant host species. The aim of this study was to identify plant hosts that are possible reservoirs of Ca. P. australiense and the SLY RLO. Thirty-one plant species from south-east Queensland were observed with disease between 2001 and 2003 and, of these, 18 species tested positive using phytoplasma-specific primers. The RLO was detected in diseased Jacksonia scoparia and Modiola caroliniana samples collected at Stanthorpe. The TBB phytoplasma was detected in 16 different plant species and Ca. P. australiense Australian grapevine yellows strain was detected in six species. The TBB phytoplasma was detected in plants collected at Nambour, Stanthorpe, Warwick and Brisbane. Ca. P. australiense was detected in plants collected at Nambour, Stanthorpe, Gatton and Allora. All four phytoplasmas were detected in diseased Gomphocarpus physocarpus plants collected at Toowoomba, Allora, Nambour and Gatton. These results indicated that the vector(s) of Ca. P. australiense are distributed throughout south-east Queensland and the diversity of phytoplasmas detected in G. physocarpus suggests it is a feeding source for phytoplasma insect vectors or it has a broad susceptibility to a range of phytoplasmas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The recent 8th Australasian plant virology workshop in Rotorua, New Zealand, discussed the development of a New Zealand database of plant virus and virus-like organisms. Key points of discussion included: (i) the purpose of such a database; (ii) who would benefit from the information in a database; (iii) the scope of a database and its associated collections; (iv) database information and format; and (v) potential funding of such a database. From the workshop and further research, we conclude that the preservation and verification of specimens within the collections and the development of a New Zealand database of plant virus and virus-like organisms is essential. Such a collection will help to fulfil statutory requirements in New Zealand and assist in fulfilling international obligations under the International Plant Protection Convention. Sustaining such a database will assist New Zealand virologists and statutory bodies to undertake scientifically sound research. Establishing reliable records and an interactive database will help to ensure accurate and timely diagnoses of diseases caused by plant viruses and virus-like organisms. Detection of new incursions and their diagnosis will be further enhanced by the use of such reference collections and their associated database. Connecting and associating this information to similar overseas databases would assist international collaborations and allow access to the latest taxonomic and diagnostic resources. Associated scientists working in the areas of plant breeding, export phytosanitary assurance and in the area of the conservation estate would also benefit from access to verified specimens of plant viruses and virus-like organisms. We conclude that funding of a New Zealand database of virus and virus-like organisms and its associated collections should be based partly on Crown funds, as it is a nationally significant biological resource.